Matrix multiplication
Recall that if A is an $m \times n$ matrix and $\vec{x}=\left[\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right]$ an n-vector, where $A=\left[\begin{array}{ccc}\vec{a}_{1} & \ldots & \vec{a}_{n} \\ \uparrow & \nearrow \\ \text { columns } \\ \text { of } A\end{array}\right]$,
Then the product is

$$
A \vec{x}=x_{1} \vec{a}_{1}+x_{2} \vec{a}_{2}+\ldots+x_{n} \vec{a}_{n} \text {, an } m \text {-vector. }
$$

In this section, we extend this to multiplication of matrices. First we show how it connects to transformations.

Composition of transformations

Suppose $T: \mathbb{R}^{k} \rightarrow \mathbb{R}^{n}$ and $S: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ are transformations. If we first apply T and then apply S, we get the composition, or composite, SOT.

$$
\mathbb{R}_{S \cdot T}^{\mathbb{R}^{k} \xrightarrow{T} \mathbb{R}^{n} \xrightarrow{S} \mathbb{R}^{m}}
$$

We define SOT as follows. If \vec{x} is a k-vector, then

$$
S \circ T(\stackrel{\rightharpoonup}{x}):=S(T(\stackrel{\rightharpoonup}{x}))
$$

Note that $T(\vec{x})$ is an n-vector, so it makes sense as
input for S.

Note that SOT takes as input k-vectors, and outputs m-vectors.
Now let $\begin{gathered}n \times k \\ \downarrow \\ \text { be } \\ l^{m \times n} \\ \downarrow\end{gathered}$ the matrix associated to S. That is,

$$
T(\vec{x})=B \vec{x} \quad \text { and } S(\vec{y})=A \vec{y}
$$

Suppose $B=\left[\begin{array}{llll}\vec{b}_{1} & \vec{b}_{2} & \cdots & \vec{b}_{k}\end{array}\right]$, where \vec{b}_{i} is the its column, and $\vec{x}=\left[\begin{array}{c}x_{1} \\ \vdots \\ x_{k}\end{array}\right]$. Then

$$
\begin{aligned}
& S \circ T(\vec{x})=S(T(\vec{x}))=A(B \vec{x}) \\
& =A\left(x_{1} \vec{b}_{1}+x_{2} \vec{b}_{2}+\cdots+x_{k} \vec{b}_{k}\right) \\
& =x_{1} \underbrace{A_{m} \vec{b}_{1}}_{m \text {-vector }}+x_{2} A_{b_{2}}+\ldots+x_{k} A \vec{b}_{k} \\
& =\left[\begin{array}{llll}
A \vec{b}_{1} & A \vec{b}_{2} & \cdots & A \vec{b}_{k}
\end{array}\right] \vec{x} \\
& \underbrace{\overbrace{\text { columns }} \rightarrow T}_{\text {matrix! }}
\end{aligned}
$$

This shows that S.T is the transformation induced by the $m \times k$ matrix

$$
\left[\begin{array}{llll}
A \vec{b}_{1} & A \vec{b}_{2} & \cdots & A \vec{b}_{k}
\end{array}\right]
$$

This matrix is the product of A and B :

Definition: Let A be an $m \times n$ matrix and B an $n \times k$ matrix. Write $B=\left[\vec{b}_{1} \ldots \vec{b}_{k}\right]$, where \vec{b}_{i} is the its column of B. The product $A B$ is the $m \times k$ matrix defined

$$
A B=\left[\begin{array}{llll}
A \vec{b}_{1} & A \vec{b}_{2} & \cdots & A b_{k}
\end{array}\right]
$$

i.e. The i th column is the m-vector $A \vec{b}_{i}$.

Note: We can only take the product $A B$ if

$$
\text { \# of columns }=\# \text { of rows of } B
$$

We saw above that if \vec{x} is a k-vector, we have:

$$
A(B \stackrel{\rightharpoonup}{x})=(A B) \stackrel{\rightharpoonup}{x}
$$

So if T_{A} and T_{B} are the associated transformations, then

$$
\left(T_{A} \circ T_{B}\right)(\vec{x})=T_{A}\left(T_{B}(\vec{x})\right)=A(B \vec{x})=(A B) \vec{x}=T_{A B}(\vec{x}) .
$$

Thus $T_{A} \circ T_{B}=T_{A B}$

Ex: Let $A=\underbrace{\left[\begin{array}{ccc}1 & 0 & 3 \\ 2 & 2 & -1 \\ 1 & 1 & 0\end{array}\right]}_{3}, B=\left[\begin{array}{cc}2 & 3 \\ 4 & 0 \\ -1 & -2\end{array}\right]\} 3$

$$
\begin{aligned}
& A\left[\begin{array}{c}
2 \\
4 \\
-1
\end{array}\right]=\left[\begin{array}{l}
2 \\
4 \\
2
\end{array}\right]+\left[\begin{array}{l}
0 \\
8 \\
4
\end{array}\right]+\left[\begin{array}{c}
-3 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
-1 \\
13 \\
6
\end{array}\right] \\
& A\left[\begin{array}{c}
3 \\
0 \\
-2
\end{array}\right]=\left[\begin{array}{l}
3 \\
6 \\
3
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]+\left[\begin{array}{c}
-6 \\
2 \\
0
\end{array}\right]=\left[\begin{array}{c}
-3 \\
8 \\
3
\end{array}\right]
\end{aligned}
$$

So $A B=\left[\begin{array}{cc}-1 & -3 \\ 13 & 8 \\ 6 & 3\end{array}\right]$

There is another way to compute the product of two matrices that computes each entry rather than each column:

Dot Product Rule: Let A be an $m \times n$ matrix and B an $n \times k$ matrix. The (i, j)-entry of $A B$ is the dot product of row i of A with column j of B.

$$
\begin{array}{ll}
\text { Ex: } A=\left[\begin{array}{ccc}
1 & 2 & 3 \\
-1 & 0 & 4
\end{array}\right], & B=\left[\begin{array}{cc}
4 & 6 \\
0 & 2 \\
3 & 5
\end{array}\right] \\
A B=\left[\begin{array}{cc}
13 & 25 \\
8 & 14
\end{array}\right], B A=\left[\begin{array}{ccc}
-2 & 8 & 36 \\
-2 & 0 & 8 \\
-2 & 6 & 29
\end{array}\right]
\end{array}
$$

This example shows that $A B \neq B A$. That is, matrix multiplication is not commutative. It's not even commutative if A and B are both square matrices of the same size.

Ex: $A=\left[\begin{array}{cc}-2 & 1 \\ 3 & 0\end{array}\right], \quad B=\left[\begin{array}{cc}5 & -3 \\ -4 & -2\end{array}\right]$
Then $A B=\left[\begin{array}{cc}-14 & 4 \\ 15 & -9\end{array}\right]$ and $B A=\left[\begin{array}{cc}-19 & 5 \\ 2 & -4\end{array}\right]$
However, some pairs of matrices do commute with each other:

$$
\begin{aligned}
& \text { Ex: } A=\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right], \quad B=\left[\begin{array}{ll}
3 & 1 \\
0 & 3
\end{array}\right] \\
& A B=\left[\begin{array}{ll}
3 & 7 \\
0 & 3
\end{array}\right], \quad B A=\left[\begin{array}{ll}
3 & 7 \\
0 & 3
\end{array}\right]
\end{aligned}
$$

Ex: $A=\left[\begin{array}{ccc}1 & 2 & 0 \\ -3 & 0 & 5\end{array}\right], I_{2}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right], I_{3}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$

Then $A I_{3}=A=I_{2} A$.

This is true in general:

If A is an $m \times n$ matrix, and I_{m} and I_{n} are the $m \times m$ and $n \times n$ identity matrices, respectively, then

$$
A I_{n}=A=I_{m} A
$$

Some properties of matrix multiplication:
Let a be a scalar, and A, B, C matrices of sizes such that the given products are defined. Then:
(1.) $A(B C)=(A B) C$ (associativity)
(2.) $A(B+C)=A B+A C$ and $(A+B) C=A C+B C$ (distributivity)
(3.) $a(A B)=(a A) B=A(a B)$.
(4.) $(A B)^{\top}=B^{\top} A^{\top}$.

Block matrices

Sometimes it is convenient to write matrices whose entries are themselves matrices, called blocks. Such a matrix is partitioned into blocks.

For example, when we write a matrix in terms of its columns, it is a block partition.
$A=\left[\begin{array}{ccc}\vec{a}_{1} & \ldots & \vec{a}_{n} \\ \hat{r}_{\text {blocks }}\end{array}\right]$ is a block partition of A.

EX:

$$
\begin{aligned}
& A=\left[\begin{array}{cc|ccc}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
\hline 2 & 2 & 1 & 0 & 1 \\
3 & -1 & -1 & 1 & 0
\end{array}\right]=\left[\begin{array}{cc}
I_{2} & 0_{23} \\
P & Q
\end{array}\right] \\
& B=\left[\begin{array}{cc}
1 & 0 \\
0 & 1 \\
\hline 7 & 2 \\
-1 & 0 \\
1 & 0
\end{array}\right]=\left[\begin{array}{l}
I_{2} \\
x
\end{array}\right]
\end{aligned}
$$

The product can be computed in block form:

$$
\begin{aligned}
& A B=\left[\begin{array}{cc}
I_{2} & O_{23} \\
P & Q
\end{array}\right]\left[\begin{array}{l}
I_{2} \\
X
\end{array}\right]=\left[\begin{array}{l}
I^{2}+O X \\
P I+Q x
\end{array}\right] \\
& Q X=\left[\begin{array}{ccc}
1 & 0 & 1 \\
-1 & 1 & 0
\end{array}\right]\left[\begin{array}{cc}
7 & 2 \\
-1 & 0 \\
1 & 0
\end{array}\right]=\left[\begin{array}{cc}
8 & 2 \\
-8 & -2
\end{array}\right]
\end{aligned}
$$

So $A B=\left[\begin{array}{cc}1 & 0 \\ 0 & 1 \\ \hline 10 & 4 \\ -5 & -3\end{array}\right]$.
Theorem: If matrices A and B are partitioned into blocks, $A B$ cam be computed using matrix multiplication using blocks as entries, as long as the corresponding blocks being multiplied are compatible.

Practice Problems: $2.3: 2 b, 3 a, 6 b, 7,8 a c, 9$

